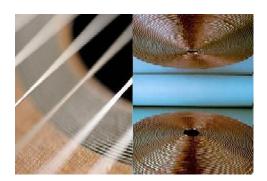
Wireless power transmission "a novel idea"

Vikash choudhary, Abdul kadir, Satendar pal Singh


Abstract - We cannot imagine the world without electric power. Generally the power is transmitted through wires. This paper describes an original idea to eradicate the hazardous usage of electrical wires which involve lot of confusion in particularly organizing them. Imagine a future in which wireless power transfer is feasible: cell phones, household robots, mp3 players, laptop computers and other portable electronics capable of charging themselves without ever being plugged in, freeing us from that final, ubiquitous power wire. Some of these devices might not even need their bulky batteries to operate. This paper includes the techniques of transmitting power without using wires with an efficiency of about 95% with non-radiative methods. Due to which it does not affect the environment surrounding. These techniques Includes resonating inductive coupling in sustainable moderate range. The coupling consists of an inductor along with a capacitor with its own resonating frequency. In any system of coupled resonators there often exists a socalled "strongly coupled" regime of operation. If one ensures to operate in that regime in a given system, the energy transfer can be very efficient. Another technique includes transfer of power through microwaves using rectennas. This is particularly suitable for long range distances ranging kilometers. With this we can avoid the confusion and danger of having long, hazardous and tangled wiring. This paper as a whole gives an effective, high performance techniques which can efficiently transmit the power to the required area vary in given distances for the power transmission through induction.

Index Terms- induction, power, receiver, short distance, transmitter, transmission, Wireless, wires.

INTRODUCTION

you probably have a few dusty power cord tangles around reasons, scientists have tried to develop methods of wireless your home. You may have even had to follow one particular power transmission that could cut the clutter or lead to clean cord through the seemingly impossible snarl to the outlet sources of electricity. Researchers have developed several hoping that the plug you pull will be the right one. This is one techniques for moving electricity over long distances without of the downfalls of electricity. While it can make people's lives wires. Some exist only as theories or prototypes. use. This paper provides the techniques used for wireless power transmission.

Unless you are particularly organized and good with tie wrap, easier, it can add a lot of clutter in the process. For these

These techniques are briefly classified into three depending on the distance between the transmitter and receiver. These are: Short range, Moderate range and Long range.

Evanscent wavy motion Cross sectional view of coupled coils.

Short distance induction:

LISER @ 2011 http://www.ijser.org

These methods can reach at most a few centimetres. The action down.) The electric toothbrush charger is an example of how of an electrical transformer is the simplest instance of wireless this principle can be used. A toothbrush's daily exposure to energy transfer. The primary and secondary circuits of a transformer are electrically isolated from each other. The transfer of energy takes place by electromagnetic coupling through a process known as mutual induction. (An added benefit is the capability to step the primary voltage either up or Ordinary simple and good electrical Connections could also seep into the toothbrush, damaging its components. Because of this, most toothbrushes recharge through inductive coupling.

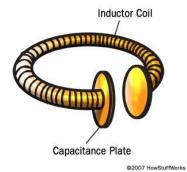
water makes a traditional plug-in charger potentially harmful dangerous. You can use the same principle to recharge several devices at once.

Electric's Power desk both use coils to create a magnetic field. Electronic devices use corresponding built-in or plug-in receivers to recharge while resting on the mat. These receivers

For example, the Splash power recharging mat and Edison contain compatible coils and the circuitry necessary to deliver electricity to devices' batteries

A Splash power mat uses induction to recharge multiple devices simultaneously.

Moderate distance:


farther away, but the process would be extremely inefficient. have the same resonant frequency. Since a magnetic field spreads in all directions, making a larger one would waste a lot of energy.

An efficient way to transfer power between coils separated by a few meters is that we could extend the distance between the coils by adding resonance to the equation. A good way to understand resonance is to think of it in terms of sound. An object's physical structure -- like the size and shape of a A capacitance plate, which can hold a charge, attaches to each trumpet -- determines the frequency at which it naturally end of the coil. As electricity travels through this coil, the coil

Household devices produce relatively small magnetic fields. vibrates. This is its resonant frequency. It's easy to get objects For this reason, chargers hold devices at the distance necessary to vibrate at their resonant frequency and difficult to get them to induce a current, which can only happen if the coils are close to vibrate at other frequencies. This is why playing a trumpet together. A larger, stronger field could induce current from can cause a nearby trumpet to begin to vibrate. Both trumpets

> Induction can take place a little differently if the electromagnetic fields around the coils resonate at the same frequency. The theory uses a curved coil of wire as an inductor.

begins to resonate. Its resonant frequency is a product of the inductance of the coil and the capacitance of the plates.

In a short theoretical analysis they demonstrate that by sending electromagnetic waves around in a highly angular waveguide, evanescent waves are produced which carry no energy. An evanscent wave is nearfield standing wave exhibiting exponential decay with distance. If a proper resonant waveguide is brought near the transmitter, the evanescent waves can allow the energy to tunnel (specifically evanescent wave coupling, the electromagnetic equivalent of tunneling to the power drawing waveguide, where they can be rectified into DC power. Since the electromagnetic waves would tunnel, they would not propagate through the air to be absorbed or dissipated, and

would not disrupt electronic devices. As long as both coils

According to the theory, one coil can recharge any device that is in range,

are out of range of one another, nothing will happen, since the fields around the coils aren't strong enough to affect much around them. Similarly, if the two coils resonate at different frequencies, nothing will happen. But if two resonating coils with the same frequency get within a few meters of each other, streams of energy move from the transmitting coil to the receiving coil. According to the theory, one coil can even send electricity to several receiving coils, as long as they all resonate at the same frequency. The researchers have named this non-radiative energy transfer since it involves stationary fields around the coils rather than fields that spread in all directions.

"Resonant inductive coupling" has key implications in solving induction works on the principle of a primary coil generating a the two main problems associated with non-resonant inductive predominantly magnetic field and a secondary coil being coupling and electromagnetic radiation, one of which is caused within that field so a current is induced within its coils. by the other; distance and efficiency. Electromagnetic

This causes the relatively short range due to the amount of greater distances the non-resonant induction method is power required to produce an electromagnetic field. Over dramatically by "tunneling" the magnetic field to a receiver coil with

inefficient and wastes resonates at the same frequency. much of the transmitted energy just to increase range. This is that Unlike the multiple-layer secondary of a non-resonant where the resonance comes in and helps efficiency transformer, such receiving coils are single layer solenoids closely spaced capacitor

the transmitter frequency thereby eliminating the wide energy in on a specific frequency increasing the range.

Long-distance Wireless Power:

space.

Centre created a small airplane that could run off power

on each end, which in combination allow the coil to be tuned to wasting "wave problem" and allowing the energy used to focus

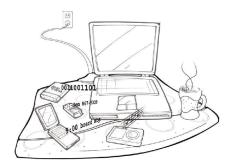
Whether or not it incorporates resonance, induction generally beamed from the Earth. The unmanned plane, called the sends power over relatively short distances. But some plans for Stationary High Altitude Relay Platform (SHARP), was wireless power involve moving electricity over a span of miles. designed as a communications relay. Rather flying from point A few proposals even involve sending power to the Earth from to point, the SHARP could fly in circles two kilometers in diameter at an altitude of about 13 miles (21 kilometers). Most In the 1980s, Canada's Communications Research importantly, the aircraft could fly for months at a time.

(SHARP) unmanned plane.

kept it in range of this transmitter. A large, disc-shaped happens: rectifying antenna, or rectenna, just behind the plane's wings changed the microwave energy from the transmitter into direct-current (DC) electricity. Because of the microwaves' interaction with the rectenna, the SHARP had a constant power and transmit it to the diodes. supply as long as it was in range of a functioning microwave array.

Rectifying antennae are central to many wireless power transmission theories. They are usually made an array

Efficiency:


The secret to the SHARP's long flight time was a large, ground- of dipole antennae, which have positive and negative poles. based microwave transmitter. The SHARP's circular flight path These antennae connect to shottkey diodes. Here's what

- Microwaves, which the electromagnetic spectrum, reach the dipole antennae.
- The antennae collect the microwave energy 2.
- The diodes act like switches that are open or closed as well as turnstiles that let electrons flow in only one direction. They direct the electrons to the rectenna's circuitry.
- The circuitry routes the electrons to the parts and systems that need them.

The efficiency of wireless power is the ratio between feet (2 meters) away using resonating coils. This kind of setup power that reaches the receiver and the power supplied to the could power or recharge all the devices in one room. Some transmitter.Researcherssuccessfully demonstrated the ability to modifications would be necessary to send power over long power a 60 watt light bulb from a power source that was seven distances, like the length of a building or a city. Power microwave range. A rectenna may be used to convert the in the tens of kilowatts have been performed.

transmission via radio waves can be made more directional, microwave energy back into electricity. Rectenna conversion allowing longer distance power beaming, with shorter efficiencies exceeding 95% have been realized. Wireless Power wavelengths of electromagnetic radiation, typically in the Transmission (using microwaves) is well proven. Experiments

at resonance.so this setup could recharge all the devices in a room at once.

Need for wireless power transmission:

Wireless transmission is employed in cases where instantaneous or continuous energy transfer is needed, but The unmanned planes or robots (where wires cannot be inconvenient, interconnecting wires are

impossible.

hazardous, or involved viz oceans volcanic mountains etc.) which are run by the wireless power over an area, as they could fly for months at a time, could be used for research as well as a mini satellite.

A few proposals even involve sending power to the Earth from space.

Number of household points receives electricity at the same frequency using single transmitting coil as long as they all are

Conclusion:

field lies in the fact that most of the power not picked up by the sight between the two coils. As long as the laptop is in a room receiving coil remains bound to the vicinity of the sending equipped with a source of such wireless power, it would unit, instead of being radiated into the environment and lost. charge automatically, without having to be plugged in. In fact, With such a design, power transfer for laptop-sized coils are it would not even need a battery to operate inside of such a more than sufficient to run a laptop can be transferred over room." In the long run, this could reduce our society's room-sized distances nearly omni-directionally and efficiently, dependence on batteries, which are currently heavy and irrespective of the geometry of the surrounding space, even expensive. At the same time for the long range power

The crucial advantage of using the non-radioactive when environmental objects completely obstruct the line-of-

transmission, power can be sent from source to receivers instantaneously without wires, reducing the cost.

REFERENCES-:

- [1] merican society of electrical engineers.
- [2] B.Thomas W., "Wireless Transmission of Power now Possible".
- [3] U.S. Patent 787,412, "Art of Transmitting Electrical Energy through the Natural Mediums".
- [4] Dombi J., (1982): Basic concepts for a theory of evaluation: The aggregative operator. European Jr. Operation Research 10, 282-293.
- [5] Tesla, N., "The transmission of electric energy without wires", Electrical World, March 5, 1904.

- [6] Brown, W. C., "Beamed microwave power transmission and its application to space", *IEEE Trans. Microwave Theory Tech.*, vol. 40, no. 6, 1992, pp.1239-1250.
- [7] Kaya, N., S. Ida, Y. Fujino, and M. Fujita, "Transmitting antenna system for airship demonstration of Space Energy and Transportation" *IEEE* Vol.1, No.4, 1996, pp.237-245.
- [8] Fujiwara, E., Y. Takahashi, N. Tanaka, K. Saga, "Compact Microwave Energy Transmitter (COMET)", Proc. of Japan-US Joint Workshop on SSPS (JUSPS), 2003, pp.183-185.
- [9] Hatsuda, T., K. Ueno, M. Inoue, "Solar power satellite interference assessment", *IEEE*, Vol. 3, No. 4, Dec. 2002, pp.65-70.

About authors:

Vikash choudhary

Vikash choudhary has done his B.E from NIT SURAT in Electrical Engg and has completed his M.tech in control system. His area of research is control and power system.

Satendar pal singh

Satendar pal singh has done his B.tech in EL Engg & M.tech in control system from GEU. He has 4 years teaching exp as

Asst prof. His research area is conrol system and power transmission

IJSER © 2011 http://www.ijser.org

Abdul kadir:

Abdul kadir has done M.tech in control system from graphic era university. Now working as Asst prof in SBDM Engg College, roorkee. His research area is renewable energy and Power system distribution.

IJSER © 2011 http://www.ijser.org